skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tsitsikas, Georgios"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Tensor decomposition on big data has attracted significant attention recently. Among the most popular methods is a class of algorithms that leverages compression in order to reduce the size of the tensor and potentially parallelize computations. A fundamental requirement for such methods to work properly is that the low-rank tensor structure is retained upon compression. In lieu of efficient and realistic means of computing and studying the effects of compression on the low rank of a tensor, we study the effects of compression on the core consistency; a widely used heuristic that has been used as a proxy for estimating that low rank. We provide theoretical analysis, where we identify sufficient conditions for the compression such that the core consistency is preserved, and we conduct extensive experiments that validate our analysis. Further, we explore popular compression schemes and how they affect the core consistency. 
    more » « less